Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1–7). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. 2. Rozwiązania i odpowiedzi zapisz w miejscu na to przeznaczonym przy każdym zadaniu. 3. W rozwiązaniach zadań rachunkowych
W tej zakładce znajdziecie moje autorskie arkusze i matury próbne z fizyki. Osoby chcące uczyć się ze mną fizyki muszą mieć przynajmniej ocenę dobrą z matematyki !!!
ZASADY AZOTOWE N NH NH 2 O 2NH NH O O 3H C NH NH O O cytozyna (C) tymina (T) uracyl (U) N N NH N NH 2 2N NH NH N NH O adenina (A) guanina (G) WYBRANE KWASY ORGANICZNE CH 3 CH COOH OH CH 3 C COOH O kwas mlekowy kwas pirogronowy HO CH COOH 2 COOH HO C COOH CH 2COOH CH 2COOH CH kwas jabłkowy kwas cytrynowy HYDROLIZA ATP N CH CH O CH HC O CH 2 OH
Lp rok forma poziom typ zadania strona zadanie temat zadania pytanie odp 117 2020 ma/czer PP zamknięte 4/10 Jądro pewnego izotopu 116 2020 ma/czer PP otwarte 14/17 Oblicz najmniejszą energię 115 2020 ma/czer PP otwarte 14/18 Do wytwarzania neutronów 114 2020 ma/czer PP otwarte 15/19 Jądro izotopu radu 113 2020 maj/czer 2015R otwarte 17/11 Badano próbkę zawierającą 112 2020 maj/czer PR otwarte 18/10 Do wytwarzanie neutronów 111 2020 maj/czer 2015R otwarte 20/14 Do wytwarzania neutronów 110 2019 próbna 2015R otwarte 13/15 Uzupełnij 109 2019 próbna 2015R otwarte 14/16 Zapoznaj się 108 2019 majowa PP zamknięte 4/9 Pewne jądro atomowe X 107 2019 majowa PP zamknięte 4/10 Czas połowicznego rozpadu 106 2019 majowa PP otwarte 13/19 Nietrwały izotop wodoru tryt 105 2019 majowa PR otwarte 16/9 Nietrwały izotop wodoru tryt 104 2019 majowa 2015R otwarte 18/12 Około 2 miliardów lat temu 103 2018 próbna 2015R otwarte 13/15 Najbardziej przenikliwym 102 2018 majowa PP zamknięte 4/10 Siły jądrowe działające 101 2018 majowa PP otwarte 12/18 Promieniotwórczy izotop 100 2018 majowa PR otwarte 17/8 Jądro atomowe 99 2018 majowa 2015R otwarte 16/13 W pewnym doświadczeniu 98 2018 próbna 2015R otwarte 5/4 Do diagnostyki i leczenia 97 2017 próbna 2015R otwarte 7/4 Innym oprócz omówionych 96 2017 próbna 2015R otwarte 9/5 Jednym ze sposobów 95 2017 majowa 2015R otwarte 14/16 Jądro izotopu uranu 94 2017 majowa PP zamknięte 4/10 Niedoborem (deficytem) masy 93 2017 majowa PP otwarte 12/21 Udowodnij, że w układzie 92 2017 próbna 2015R otwarte 19/18 Węgiel 14 6 C jest , 91 2016 próbna 2015R zamknięte 3/3 Wybierz i zapisz właściwe 90 2016 próbna 2015R otwarte 9/13 Badanie wieku obiektów 89 2016 majowa 2015R otwarte 3/2 Radon jest radioaktywnym 88 2016 majowa PR otwarte 11/7 Deuter 87 2016 majowa PP otwarte 10/19 Energia z reakcji jądrowych 86 2016 majowa PP otwarte 10/20 Reakcja jądrowa 85 2016 próbna 2015R otwarte 13/15 Podczas badania granitu 84 2015 majowa 2015R otwarte 14/14 Polon 210 Po jest źródłem 83 2015 majowa PR otwarte 12/6 Helowy etap ż... z. 1 z 4 82 2015 majowa PP otwarte 11/21 Datowanie 81 2015 próbna PR otwarte 4/2 Obok przedstawiono 80 2014 próbna PR otwarte 19/20 Promieniotwórczy izotop 79 2014 próbna PR otwarte 8/7 Tor 78 2014 majowa PP zamknięte 3/10 Izotop polonu 77 2014 majowa PP otwarte 11/21 Bombardowanie 76 2014 majowa PR otwarte 9/5 Rozpad alfa 75 2014 próbna PP zamknięte 3/10 Czas połowicznego rozpadu 74 2014 próbna PR otwarte 9/7 Rozpad polonu 73 ???? próbna PR otwarte 202/4 Rozpad jądra berylu z. 6 z 6 72 2015 pilotaż PR otwarte 16/18 Pozyton to antycząstka 71 2013 próbna PP zamknięte 2/6 Czas połowicznego rozpadu 70 2013 próbna PP zamknięte 2/7 Cząstka alfa jest jądrem helu 69 2013 próbna PP otwarte 4/11 Synteza jąder helu 68 ???? próbna PP zamknięte 145/9 W reakcji jądrowej 67 ???? próbna PP otwarte 152/17 Radon 66 ???? próbna PR otwarte 161/2 Słońce - z. 1-6 z 7 65 2013 dodatkowa PR otwarte 12/7 Gorąca Ziemia 64 2013 majowa PP otwarte 9/19 Medycyna nuklearna 63 2013 majowa PP otwarte 10/20 Elektron i pozyton - z. 1 z 2 62 2013 majowa PR otwarte 11/6 Słońce - z. 2-5 z 5 61 2013 próbna PP zamknięte 3/10 Beryl 9 4 bombardowany 60 2012 próbna PP zamknięte 3/10 W skład jądra helu wchodzą: 59 2012 próbna? PP otwarte 7/17 Reakcja rozszczepienia 58 2012 próbna PP otwarte 10/17 Nietrwały izotop fosforu 57 2012 próbna PP zamknięte 3/9 Ile rozpadów alfa i beta 56 2012 próbna PR otwarte 8/4 Promieniowanie jądrowe 55 2011 próbna PP otwarte 10/20 Uzupełnić równania reakcji 54 2011 próbna? PP otwarte 11/20 Szereg aktynowy 53 2011 AM PR otwarte 7/4 Fizyka w medycynie -z. 3-5 z 5 52 2011 majowa PP zamknięte 2/4 Co to jest izotop 51 2011 majowa PP otwarte 9/19 Rozpad 3 zadania 50 2011 majowa PR otwarte 9/5 New Horizons - 1-3 z 5 49 2011 próbna PP otwarte 11/17 Elektrownia jądrowa 48 2011 próbna PR otwarte 12/6 Reaktor jądrowy 47 2010 próbna PR otwarte 10/5 Reakcja jądrowa 46 2010 poprawka PP zamknięte 4/10 Emisja cząstki beta - 45 2010 poprawka PP otwarte 10/21 Reakcja jądrowa z. 1-2 z 3 44 2010 poprawka PP otwarte 11/22 Synteza jądrowa 43 2010 majowa PP zamknięte 2/4 Ile protonów po rozpadzie beta 42 2010 majowa PP otwarte 11/19 Czujnik dymu 41 2010 próbna PP zamknięte 3/9 Defekt masy 40 2010 próbna PP otwarte 8/14 Izotop promieniotwórczy 39 2009 próbna PP otwarte 10/19 Przemiany jądrowe 38 2009 AM PR otwarte 12/5 Słońce - z. 3 z 6 37 2009 majowa PP zamknięte 3/8 Niedobór masy 36 2009 majowa PP otwarte 8/17 Rozpad beta 35 2009 próbna PP zamknięte 3/10 Uzupełnienie reakcji jądrowej 34 2009 próbna PP otwarte 9/19 Reakcje jądrowe na Słońcu 33 2008 próbna PP zamknięte 3/3 W pojemniku umieszczono 32 2008 próbna PP zamknięte 3/4 Izotopy wodoru 31 2008 próbna PP otwarte 5/11 Czas połowicznego zaniku 30 2008 próbna PR otwarte 12/9 Jądro i energia wiązania 29 2008 majowa PP zamknięte 3/9 Jakie to promieniowanie 28 2008 majowa PP otwarte 11/21 Rozpad promieniotwórczy 27 2007 próbna PP otwarte 6/12 Przemiana jądra 26 2007 próbna PP otwarte 8/15 Izotop toru 25 2007 majowa PP zamknięte 3/10 Rozpad promieniotwórczy 24 2007 majowa PP otwarte 10/21 Reakcje jądrowe 23 2007 majowa PR otwarte 9/4 Reakcje rozszczepienia 22 2007 majowa PR otwarte 10/5 Jądro at. a gwiazda neutronowa 21 2006 próbna PP zamknięte 3/9 Rozpad promieniotwórczy 20 2006 próbna PP zamknięte 3/9 Reakcje jądrowe 19 2006 próbna PP otwarte 10/23 Radioterapia 18 2006 majowa PP zamknięte 2/4 Liczna protonów i neutronów 17 2006 próbna PP otwarte 8/18 Węgiel 16 2006 próbna PR otwarte 10/28 Sonda Pioneer - z. 3 z 3 15 2006 próbna PR otwarte 12/5 Cząstka w p. mag.. - z. 4-5 z 5 14 2005 próbna PP zamknięte 3/10 Reakcja jądrowa 13 2005 próbna PP otwarte 11/21 Rozpad 12 2005 majowa PP zamknięte 4/7 Rozpad alfa 11 2005 majowa PR otwarte 9/31 Syriusz - z. 4-5 z 5 10 2005 próbna PP zamknięte 3/8 Rozpad promieniotwórczy 9 2004 próbna PP zamknięte 4/8 Na rys. przedstawiono schemat 8 2004 próbna PP otwarte 12/21 Rutherford przeprowadził 7 2004 próbna PP zamknięte 4/10 Moderator w reaktorze 6 2004 próbna PP otwarte 10/18 Promieniotwórczość 5 2004 próbna PP otwarte 10/21 Izotop 4 2003 próbna PP zamknięte 4/9 Izotopy 3 2003 próbna PP zamknięte 4/10 Ilość przemian alfa i beta 2 2002 majowa PP otwarte 12/16 Izotop bizmutu 1 2002 majowa PR otwarte 10/27 Energia Słońca - z. 3 z 3
Egzamin maturalny z fizyki i astronomii Klucz punktowania odpowiedzi – poziom podstawowy 3 Zadanie 8. Wiadomości i rozumienie Opisywanie wpływu pola magnetycznego zwojnicy na ruch prostoliniowego przewodnika z prądem umieszczonego w jej środku 0–1 Poprawna odpowiedź: A. 0 N. Zadanie 9. Wiadomości i rozumienie
Krążek, po uderzeniu przez hokeistę, poruszał się ruchem jednostajnie opóźnionym po linii prostej, dlatego, aby obliczyć czas ruchu krążka skorzystamy ze wzorów na prędkość oraz drogę w ruchu jednostajnie przyspieszonym, podstawiając w miejsce przsypieszenia a wielkość –a : $$ V_k = V_0 + a \hspace{.05cm} t = V_0 \hspace{.1cm} – \hspace{.1cm} a \hspace{.05cm} t \\[10pt] s = V_0 \hspace{.08cm} t + \tfrac{1}{2} \hspace{.05cm} a \hspace{.05cm} t^2 = V_0 \hspace{.08cm} t \hspace{.1cm} – \hspace{.1cm} \tfrac{1}{2} \hspace{.05cm} a \hspace{.05cm} t^2$$ Wiemy, że prędkość początkowa krążka V0 = V1 = 14 m/s, droga przebyta przez krążek s = s1 = 28 m, a prędkość końcowa Vk = 0 m/s (krążek zatrzymuje się), dlatego też: $$ 0 = V_1 \hspace{.1cm} – \hspace{.1cm} a \hspace{.05cm} t_1 \hspace{1cm} \longrightarrow \hspace{1cm} V_1 = a \hspace{.05cm} t_1 \\[10pt] s_1 = V_1 \hspace{.08cm} t_1 \hspace{.1cm} – \hspace{.1cm} \tfrac{1}{2} \hspace{.05cm} a \hspace{.05cm} t_1^2$$ Wielkością szukaną w zadaniu jest czas ruchu krążka t1. Aby obliczyć wartość t1 przkeształcimy wyrażenie V1 = a t1 względem przyspieszenia a : $$V_1 = a \hspace{.05cm} t_1 \hspace{1cm} \longrightarrow \hspace{1cm} a =\frac{V_1}{t_1}$$ i następnie podstawimy je do wzoru na drogę s1: $$s_1 = V_1 \hspace{.08cm} t_1 \hspace{.1cm} – \hspace{.1cm} \tfrac{1}{2} \cdot \frac{V_1}{t_1} \cdot \hspace{.05cm} t_1^2 = V_1 \hspace{.08cm} t_1 \hspace{.1cm} – \hspace{.1cm} \tfrac{1}{2} \hspace{.05cm} V_1 \hspace{.05cm} t_1 = \tfrac{1}{2} \hspace{.05cm} V_1 \hspace{.05cm} t_1$$ Po przekształceniu powyższego wzoru względem czasu t1, podstawieniu wartości liczbowych i wykonaniu obliczeń, otrzymamy: $$s_1 = \tfrac{1}{2} \hspace{.05cm} V_1 \hspace{.05cm} t_1 \hspace{1cm} \longrightarrow \hspace{1cm} t_1 = \frac{2 \hspace{.05cm} s_1}{V_1} = \frac{2 \cdot 28 \hspace{.05cm} \textrm{m}}{14 \hspace{.05cm} \tfrac{\textrm{m}}{\textrm{s}}} = 4 \hspace{.05cm} \textrm{s}$$ Prawidłowa odpowiedź: czas ruchu krążka t1 = 4 s. Aby obliczyć drogę s2 przebytą przez krążek poruszający się z prędkością $V_2 = \tfrac{1}{2} \hspace{.05cm} V_1$ skorzystamy tym razem z zasady zachowania energii. Zgodnie z informacją zawartą we wstępie tego zadania jedyną siłą działającą na krążek podczas jego ruchu po powierzchni lodu jest siła tarcia kinetycznego $\vec{F}_{Tk}$ , o której wiemy, że przyjmuje stałą wartość, proporcjonalną do ciężaru krążka. Oznacza to, że w jednym oraz w drugim przypadku siła ta wykonuje taką samą pracę. Siła tarcia kinetycznego, działając przeciwnie do kierunku ruchu krążka, powoduje stopniowe zmniejszanie jego prędkości, co przekłada się bezpośrednio na zmniejszanie się jego energii kinetycznej. W związku z powyższym możemy zapisać, że: $$\Delta \hspace{.05cm} E_k = \hspace{.1cm} – \hspace{.1cm} W_{Tk}$$ gdzie ΔEk to zmiana energii kinetycznej krążka, a WTk to praca wykonana przez siłę tarcia kinetycznego. Korzystając ze wzorów na energię kinetyczną oraz pracę, mamy: $$\tfrac{1}{2} \hspace{.05cm} m \hspace{.05cm} \left( V_k \hspace{.1cm} – \hspace{.1cm} V_0 \right)^2 = \hspace{.1cm} – \hspace{.1cm} F_{Tk} \hspace{.09cm} s$$ W jednym oraz w drugim przypadku prędkość końcowa krążka Vk = 0 m/s, w związku z czym: – pierwszy przypadek: $$\tfrac{1}{2} \hspace{.05cm} m \hspace{.05cm} \left( 0 \hspace{.1cm} – \hspace{.1cm} V_1 \right)^2 = \hspace{.1cm} – \hspace{.1cm} F_{Tk} \hspace{.09cm} s_1 \hspace{1cm} \longrightarrow \hspace{1cm} \tfrac{1}{2} \hspace{.05cm} m \hspace{.05cm} V_1^2 = F_{Tk} \hspace{.09cm} s_1$$ – drugi przypadek: $$\tfrac{1}{2} \hspace{.05cm} m \hspace{.05cm} \left( 0 \hspace{.1cm} – \hspace{.1cm} V_2 \right)^2 = \hspace{.1cm} – \hspace{.1cm} F_{Tk} \hspace{.09cm} s_2 \hspace{1cm} \longrightarrow \hspace{1cm} \tfrac{1}{2} \hspace{.05cm} m \hspace{.05cm} V_2^2 = F_{Tk} \hspace{.09cm} s_2$$ Z pierwszego równania dostaniemy: $F_{Tk} = \dfrac{\tfrac{1}{2} \hspace{.05cm} m \hspace{.05cm} V_1^2}{s_1}$ . Po podstawieniu tego wyrażenia do drugiego wzoru, otrzymamy: $$\tfrac{1}{2} \hspace{.05cm} m \hspace{.05cm} V_2^2 = \dfrac{\tfrac{1}{2} \hspace{.05cm} m \hspace{.05cm} V_1^2}{s_1} \hspace{.05cm} s_2 \hspace{1cm} \longrightarrow \hspace{1cm} \frac{s_2}{s_1} = \frac{V_2^2}{V_1^2} = \left( \frac{V_2}{V_1} \right)^2$$ Wiemy, że $V_2 = \tfrac{1}{2} \hspace{.05cm} V_1$ , zatem: $$\frac{s_2}{s_1} = \frac{V_2^2}{V_1^2} = \left( \frac{V_2}{V_1} \right)^2 = \frac{V_2^2}{V_1^2} = \left( \frac{\tfrac{1}{2} \hspace{.05cm} V_1}{V_1} \right)^2 = \tfrac{1}{4}$$ Droga s1 = 28 m, w związku z czym: $$s_2 = \tfrac{1}{4} \hspace{.05cm} s_1 = \tfrac{1}{4} \cdot 28 \hspace{.05cm} \textrm{m} = 7 \hspace{.05cm} \textrm{m}$$ Prawidłowa odpowiedź: droga przebyta przez krążek wyniosła s2 = 7 m. Korzystamy z drugiej zasady dynamiki Newtona. Jak napisaliśmy w zadaniu jedyną siłą działającą na krążek jest siła tarcia kinetycznego $\vec{F}_{Tk}$ , dlatego: $$\vec{F}_{wyp} = m \hspace{.05cm} \vec{a} \hspace{1cm} \longrightarrow \hspace{1cm} \vec{F}_{Tk} = m \hspace{.05cm} \vec{a}$$ Siła $\vec{F}_{Tk}$ jest proporcjonalna do ciężaru krążka, tak więc: $$\mu \hspace{.05cm} m \hspace{.05cm} g = m \hspace{.05cm} a$$ gdzie μ to współczynnik tarcia kinetycznego, a g – przyspieszenie ziemskie. Po skróceniu i odwróceniu stronami powyższego wzoru, mamy: $$a = \mu \hspace{.05cm} g$$ Ruch ciała począwszy od punktu B jest złożeniem dwóch ruchów: ruchu w kierunku poziomym tj. wzdłuż osi x oraz ruchu w kierunku pionowym tj. wzdłuż osi y. Aby wyznaczyć położenie ciała w chwili t1 = 1 s oraz t2 = 2 s, od momentu, gdy ciało to znalazło się w punkcie B , skorzystamy z faktu, że siła $\vec{F}$ działając na ciało pod kątem prostym, a więc prostopadle do początkowego kierunku ruchu ciała nie spowodowała zmiany wartości prędkości tego ciała w kierunku poziomym. Ruch ciała w kierunku poziomym stanowi kontynuację jego ruchu przed uderzeniem (ruch jednostajny prostoliniowy), a więc podczas każdej sekundy ruchu ciało pokona wzdłuż osi x odległość równą czterem kratkom. Gdy zaznaczymy te dwa położenia ciała na wykresie i następnie od tych punktów poprowadzimy pionowe linie ku górze wykresu, to miejsca przecięcia tych linii z prostą k wyznaczą nam położenia ciała w chwilach t1 i t2 (dwa fioletowe punkty na prostej k ). Prędkość $\vec{V}_k$ tego ciała jest złożeniem składowej poziomej $\vec{V}_{kx}$ oraz składowej pionowej $\vec{V}_{ky}$ : $$V_k = \sqrt{V_{kx}^2 + V_{ky}^2}$$ Zgodnie z wykresem zamieszczonym w zadaniu składowa pozioma Vkx wynosi 4 m/s, ponieważ ciało podczas każdej sekundy ruchu pokonuje w poziomie odległość równą 4 m (odległość ta odpowiada czterem kratkom na wykresie, a każda kratka ma długość 1 m). Składowa pionowa prędkości Vky jest równa 3 m/s, ponieważ ciało w pionie pokonuje podczas każdej sekundy ruchu odległość równą 3 m (trzy kratki). Znając wartość Vkx i Vky możemy przystąpić do obliczenia wartości prędkości Vk : $$V_k = \sqrt{V_{kx}^2 + V_{ky}^2} = \sqrt{\left( 4 \hspace{.05cm} \tfrac{\textrm{m}}{\textrm{s}} \right)^2 + \left( 3 \hspace{.05cm} \tfrac{\textrm{m}}{\textrm{s}} \right)^2} = \sqrt{25 \hspace{.05cm} \tfrac{\textrm{m}^2}{\textrm{s}^2}} = 5 \hspace{.05cm} \tfrac{\textrm{m}}{\textrm{s}}$$ Prawidłowa odpowiedź: ciało poruszało się wzdłuż prostej k z prędkością Vk = 5 m/s. Zacznijmy od zapisania wzoru opisującego drugą zasadę dynamiki Newtona (zobacz: Pęd ciała) $$\vec{F} = \dfrac{\Delta \hspace{.05cm} \vec{p}}{\Delta \hspace{.05cm} t}$$ gdzie $\Delta \hspace{.05cm} \vec{p}$ to zmiana pędu ciała w czasie $\Delta \hspace{.05cm} t$ . Pęd to wielkość fizyczna równa iloczynowi masy i prędkości ciała (p = m V ), dlatego też: $$\Delta \hspace{.05cm} p = m \hspace{.05cm} \Delta \hspace{.02cm} V$$ W naszym przypadku zmiana prędkości ΔV ciała odpowiada zmianie prędkości ciała w kierunku pionowym (ΔV = Vy ), bo właśnie w tym kierunku działała na ciało siła $\vec{F}$ powodująca zmianę prędkości ciała. Mamy więc: $$\vec{F}_{wyp} = \vec{F} = \dfrac{\Delta \hspace{.05cm} \vec{p}}{\Delta \hspace{.05cm} t_B} = \dfrac{m \hspace{.05cm} \Delta \hspace{.02cm} \vec{V}}{\Delta \hspace{.05cm} t_B} = \dfrac{m \hspace{.05cm} \vec{V}_y}{\Delta \hspace{.05cm} t_B}$$ Po podstawieniu do powyższego wzoru wartości liczbowych oraz wykonaniu obliczeń, dostaniemy: $$F = \dfrac{0,\hspace{ \hspace{.05cm} \textrm{kg} \cdot 3 \hspace{.05cm} \tfrac{\textrm{m}}{\textrm{s}}}{0,\hspace{ \hspace{.05cm} \textrm{s}} = 60 \hspace{.05cm} \textrm{N}$$ Prawidłowa odpowiedź: siła działająca na krążek była równa F = 60 N. Belka znajduje się stanie równowagi statycznej, a więc wszystkie siły działające na belkę równoważą się (siła wypadkowa jest równa zero). Tymi siłami są: skierowana pionowo w dół siła cieżkości $\vec{F_g}$ równa ciężarowi belki $\vec{Q}$ , oraz siły $\vec{F_A}$ i $\vec{F_B}$ działające pionowo na belkę ze strony uchwytów. Aby określić zwrot oraz wartość siły $\vec{F_A}$ i $\vec{F_B}$ wyobraźmy sobie sytuację, w której na belkę działa tylko siła $\vec{F_B}$ (zakładamy, że do belki w punkcie A nie jest zamocowany żaden uchwyt). W takiej sytuacji siła $\vec{F_B}$ musi równoważyć siłę ciężkości $\vec{Q}$ , w związku z czym jej wartość musi odpowiadać wartości siły $\vec{Q}$ oraz dodatkowo jej zwrot musi być przeciwny do zwrotu siły ciężkości. Belka zamocowana w ten sposób do sufitu będzie mogła, po przyłożeniu dodatkowej siły, obracać się w płaszczyźnie rysunku. Aby belka mogła znajdować się w położeniu przedstawionym na powyższym rysunku, siła $\vec{F_A}$ , działająca na belkę ze strony uchwytu UA , będzie musiała mieć kierunek i zwrot zgodny z kierunkiem i zwrotem siły ciężkości $\vec{Q}$ . Dodatkowo, wartość tej siły będzie mniejsza od wartości siły $\vec{F_B}$ (możesz sobie wyobrazić, że na sile $\vec{F_B}$ "spoczywa" jak gdyby "główny ciężar" przeciwstawiający się sile ciężkości $\vec{Q}$ , a siła $\vec{F_A}$ jest takim jakby dodatkiem pozwalającym belce znajdować się w położeniu poziomym). Dla ciała znajdującego się w stanie równowagi statycznej suma wektorowa wszystkich sił i momentów sił działających na to ciało jest równa zero. Z warunki równowagi sił zapisanego dla belki, mamy: $$\vec{Q} + \vec{F_A} \hspace{.1cm} – \hspace{.1cm} \vec{F_B} = 0 \hspace{1cm} \longrightarrow \hspace{1cm} \vec{Q} + \vec{F_A} = \vec{F_B}$$ Z kolei, z warunku równowagi momentów sił, zapisanego względem punktu A, mamy: $$\vec{M_Q} + \vec{M_A} \hspace{.1cm} – \hspace{.1cm} \vec{M_B} = 0 \hspace{1cm} \longrightarrow \hspace{1cm} \vec{M_Q} \cdot |AS| + \vec{M_A} \cdot 0 = \vec{M_Q} \cdot |AS| = \vec{M_B} \cdot |AB|$$ Odcinek |AS| ma długość $\tfrac{1}{2} \hspace{.05cm} l = \tfrac{1}{2} \cdot 3 \hspace{.05cm} \textrm{m} = 1,\hspace{ \hspace{.05cm} \textrm{m}$ , a odcinek |AB| jest równy 1 m, zatem: $$Q \cdot 1,\hspace{ \hspace{.05cm} \textrm{m} = F_B$$ Ciężar belki Q = 120 N, dlatego też: $$F_B = 120 \hspace{.05cm} \textrm{N} \cdot 1,\hspace{ \hspace{.05cm} \textrm{m} = 180 \hspace{.05cm} \textrm{N}$$ Znając wartość siły $\vec{F_B}$ możemy przystąpić do obliczenia wartości siły $\vec{F_A}$ : $$Q + F_A = F_B \hspace{1cm} \longrightarrow \hspace{1cm} F_A = F_B \hspace{.1cm} – \hspace{.1cm} Q = 180 \hspace{.05cm} \textrm{N} \hspace{.1cm} – \hspace{.1cm} 120 \hspace{.05cm} \textrm{N} = 60 \hspace{.05cm} \textrm{N}$$ Prawidłowa odpowiedź: FA = 60 N, FB = 180 N. Zgodnie z teorią wektor natężenia pola elektrycznego w dowolnym punkcie przestrzeni jest zawsze zwrócony od ładunku dodatniego. Aby obliczyć wartość wypadkowego natężenia pola elektrycznego w punkcie A , musimy dodać wektorowo wektory natężenia pola w tym punkcie pochodzące od każdego z tych ładunków. Zwróć uwagę, że zgodnie z powyższym rysunkiem wektory natężenia pola pochodzące od ładunków +Q (jasnoszare strzałki) wzajemnie się równoważą (jednakowe długości wektorów, lecz przeciwne zwroty), w związku z czym wypadkowy wektor natężenia pola elektrycznego w punkcie A jest równy wektorowi natężenia pola elektrycznego $\vec{E}_q$ pochodzącego od ładunku +q : $$\vec{E}_A = \vec{E}_q = k \frac{q}{r^2}$$ gdzie k to stała elektrostatyczna, a r to odległość ładunku +q od punktu A . Aby wyrazić odległość r w oparciu o a , czyli długość boku trójkąta równobocznego, skorzystamy z faktu, że odległość r , dzieląca ładunek q od punktu A , jest równa wysokości trójkąta równobocznego. Wysokość ta wynosi $h = \frac{\sqrt{3} \hspace{.05cm} a}{2}$ , dlatego: $$E_A = k \frac{q}{r^2} = \frac{k \hspace{.05cm} q}{\left( \dfrac{\sqrt{3} \hspace{.05cm} a}{2} \right)^2} = \frac{4 \hspace{.05cm} k \hspace{.05cm} q}{3 \hspace{.05cm} a^2}$$ Prawidłowa odpowiedź: wypadkowe natężenia pola elektrycznego w punkcie A jest równe $E_A = \frac{4 \hspace{.05cm} k \hspace{.05cm} q}{3 \hspace{.05cm} a^2}$ . W zadaniu tym należy zauważyć, że wraz z dwukrotnym zmniejszeniem długości boku trójkąta równobocznego odległość każdego z ładunków od punktu S ' także maleje dwukrotnie. Dla takiej samej konfiguracji oraz wartości ładunków wartość wypadkowego natężenia pola elektrycznego zależy tylko i wyłącznie od odległości dzielącej każdy z ładunków od punktu, w którym to pole chcemy obliczyć. Aby więc sprawdzić jak zmieni się wartość wypadkowego natężenia pola elektrycznego $\vec{E}_{wyp,S’}$ w punkcie S ' w stosunku do $\vec{E}_{wyp,S}$ w punkcie S nie musimy obliczać wartości tego pola dla jednego oraz drugiego przypadku, tylko skorzystać z prostego podstawienia: $$\dfrac{E_{wyp,S’}}{E_{wyp,S}} = \dfrac{\dfrac{E}{\tfrac{1}{2} \hspace{.05cm} a^2}}{\dfrac{E}{a^2}} = \dfrac{a^2}{\tfrac{1}{4} \hspace{.05cm} a^2} = 4$$ gdzie a to długość boku trójkąta równobocznego. Widzimy więc, że wypadkowe natężenia pola elektrycznego wzrośnie czterokrotnie. Prawidłowa odpowiedź: odpowiedź D. Rozwiązania kolejnych zadań z tego arkusza maturalnego znajdziesz na poniższych stronach:
przejdź do: Matura z języka niemieckiego Przejdź do: Zadania maturalne z niemieckiego ze wskazówkami przejdź do: Testy niemiecki online Termin: matura 2023 maj Poziom: podstawowy
Liczba zadań: 21. Liczba pytań: 36. Informator, formuła od 2015. Zadania są z różnych działów. Podane są odpowiedzi, schemat punktacji oraz ocenione przykłady rozwiązań. Uwaga: niektórych zadań nie będzie na maturze 2022 z powodu niezgodności treści z wymaganiami egzaminacyjnymi. Takimi przykładami są zadania: 3, 4, 16, 17. Natomiast w zadaniu 20 nastąpiła modyfikacja treści, aby było zgodne z zadań: 30. Liczba pytań: 74. Podane są wskazówki i zadań: 11. Liczba pytań: 24. Podane są wskazówki i zadań: 11. Liczba pytań: 24. Podane są wskazówki i zadań: 10. Liczba pytań: 19. Podane są wskazówki i zadań: 13. Liczba pytań: 24. Podane są wskazówki i zadań: 11. Liczba pytań: 22. Podane są wskazówki i zadań: 10. Liczba pytań: 23. Podane są wskazówki i zadań: 10. Liczba pytań: 23. Podane są wskazówki i odpowiedzi.
EGZAMIN MATURALNY Z FIZYKI POZIOM ROZSZERZONY DATA: 18 maja 2021 r. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 180 minut LICZBA PUNKTÓW DO UZYSKANIA: 60 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony (zadania 1–10). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. 2.
ZADANIA MATURALNE Z FIZYKI OD 2005 ROKU Zdobądź wyższy wynik na maturze! 🎓🏆 Uzyskaj natychmiastowy dostęp do Zbioru Zadań...Wpisz poniżej adres e-mail, na który chcesz otrzymać zbiór. Twoje informacje są w 100% bezpieczne!Co ZYSKASZ dzięki Zbiorowi? 🎁 Wszystkie zadania jakie pojawiły się na maturach od 2005 z poziomu podstawowego i odpowiedzi i zasady punktowania ich przez z nich korzystać na telefonie, komputerze lub wydrukować [PDF].Uzyskaj natychmiastowy dostęp do Zbioru Zadań...Wpisz poniżej adres e-mail, na który chcesz otrzymać zbiór. Twoje informacje są w 100% bezpieczne! Copyright 2022 - Matura100procent - kursy maturalne - Wszystkie Prawa Zastrzeżone Strona wykorzystuje pliki cookies, by działać prawidłowo oraz do celów analitycznych, reklamowych i społecznościowych. OK, Rozumiem
Testy z fizyki dla maturzystów przygotowujących się do matury. Matura z fizyki, 18 maja 2021 - poziom rozszerzony. Formuła od 2015. Liczba zdających: 19665 (LO: 13878, technikum: 5787).
Lista zadańOdpowiedzi do tej matury możesz sprawdzić również rozwiązując test w dostępnej już aplikacji Matura - testy i zadania, w której jest także, np. odmierzanie czasu, dodawanie do powtórek, zapamiętywanie postępu i wyników czy notatnik :) Dziękujemy developerom z firmy Geeknauts, którzy stworzyli tę aplikację Hokeista uderzył kijem w nieruchomy krążek. Po uderzeniu krążek uzyskał poziomą prędkość początkową o wartości v1 = 14 m/s. Dalej krążek poruszał się po powierzchni lodu ruchem jednostajnie opóźnionym prostoliniowym. Od momentu uzyskania prędkości po uderzeniu aż do chwili zatrzymania się krążek przebył drogę s1 = 28 m. W zadaniach przyjmij, że siła tarcia kinetycznego, działająca na krążek poruszający się po lodzie, ma stałą wartość, proporcjonalną do wartości ciężaru krążka. Pomiń inne siły działające na krążek w kierunku poziomym. pwz: 61%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla Oblicz czas ruchu krążka od momentu uzyskania prędkości aż do zatrzymania się. pwz: 39%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla Hokeista ponownie uderzył kijem w ten sam nieruchomy krążek. Po tym uderzeniu krążek uzyskał poziomą prędkość początkową o wartości v2 dwukrotnie mniejszej od v1. Oblicz drogę, jaką przebył krążek od momentu uzyskania prędkości aż do chwili zatrzymania się. pwz: 45%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla Zgodnie z założeniami dla modelu zjawiska, opisanymi w treści zadania 1., można wykazać, że wartość a przyśpieszenia w ruchu jednostajnie opóźnionym krążka nie będzie zależała od jego masy m, a jedynie będzie zależna od wartości przyśpieszenia ziemskiego g i od współczynnika tarcia kinetycznego μ. Wykaż, że wartość a przyśpieszenia krążka nie zależy od jego masy m. W tym celu wyprowadź wzór pozwalający wyznaczyć a tylko za pomocą μ i g. Ciało, które potraktujemy jako punkt materialny, początkowo poruszało się ruchem jednostajnym wzdłuż prostej AB w układzie inercjalnym. Gdy ciało znalazło się w punkcie B, zostało uderzone. Na skutek zadziałania siły w punkcie B nastąpiła zmiana pędu ciała – po uderzeniu ciało poruszało się ruchem jednostajnym wzdłuż prostej k z inną wartością prędkości niż przed uderzeniem. Na poniższym rysunku zilustrowano fragment toru ruchu ciała w układzie współrzędnych (x, y). Ponadto na fragmencie prostej AB przedstawiono położenia ciała w czterech wybranych chwilach, pomiędzy którymi upływał jednakowy odstęp czasu Δt = 1 s. Analogicznych położeń ciała wzdłuż fragmentu prostej k nie przedstawiono. Narysowano wektor siły , która zadziałała w punkcie B. Długość każdego boku kratki na rysunku odpowiada rzeczywistej długości 1 dalszej analizy opisanego ruchu przyjmij, że:• czas działania siły był na tyle krótki, że na rysunku pominięto zakrzywioną część toru ruchu od punktu B, gdy na ciało działała siła• siła była stała. pwz: 70%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla Na powyższym rysunku, na fragmencie prostej k, narysuj: położenie ciała w chwili t1 = 1 s oraz położenie ciała w chwili t2 = 2 s, licząc czas od momentu, gdy ciało znalazło się w punkcie B. pwz: 49%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla Oblicz wartość vk prędkości, z jaką ciało poruszało się wzdłuż prostej k po uderzeniu. pwz: 26%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla Czas działania siły wynosił ΔtB = 0,01 s. Masa ciała była równa m = 0,2 kg. Oblicz wartość siły . Zadanie 3. (0–5)Drewnianą jednorodną belkę o ciężarze Q = 120 N i długości l = 3 m podwieszano pod sufitem na uchwytach UA i UB. Uchwyt UA łączy się z belką w punkcie A, a uchwyt UB – w punkcie B. Mocowanie pojedynczego uchwytu do belki umożliwiało jej obrót w płaszczyźnie rysunku. Belkę zawieszono na dwóch uchwytach tak, że utrzymywała się nieruchomo w pozycji poziomej. Odległość między uchwytami wynosi lAB = 1 m. Na rysunku 1. przedstawiono opisaną sytuację, ponadto oznaczono punkt S – środek masy belki. pwz: 16%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla Na rysunku 2. narysuj i oznacz wektory sił A i B , z jakimi uchwyty działają na belkę odpowiednio w punktach A i B – gdy belka znajduje się w opisanym położeniu równowagi. Zachowaj relację (większy, równy, mniejszy) między wartościami sił i zapisz tę relację – wstaw w wykropkowane miejsce obok rysunku jeden ze znaków: >, =, q. Punkt A jest środkiem boku łączącego te wierzchołki trójkąta, w których znajdują się jednakowe ładunki Q (zobacz rysunek 1.). Punkt S jest punktem przecięcia się wysokości trójkąta. pwz: 36%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla Na rysunku 1. narysuj – wektor wypadkowego natężenia pola elektrycznego w punkcie A. Zapisz wzór pozwalający wyznaczyć wartość EA tego wektora tylko poprzez q, a oraz przez odpowiednie stałe fizyczne. pwz: 49%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 5. (0–3)Lekki, aluminiowy pierścień zawieszono na nitce w pobliżu zwojnicy. Środek pierścienia i środki pętli zwojnicy leżą na jednej prostej. Wewnątrz zwojnicy znajduje się pręt wykonany z ferromagnetyka. Do zwojnicy podłączono źródło stałego napięcia i opornik suwakowy. Gdy w obwodzie płynął prąd stały, to pierścień wisiał pionowo. Tę sytuację przedstawiono na rysunku poniżej. Następnie suwak opornika przesuwano w różne strony i obserwowano zachowanie się pierścienia. Uwaga! Bliżej patrzącego jest część pierścienia narysowana grubszą Uzupełnij zdania 1. i 2., tak aby były Gdy suwak opornika jest przesuwany w lewo według rysunku (w stronę źródła napięcia), to indukcja pola magnetycznego zwojnicy . 2. Jeżeli indukcja pola magnetycznego wytwarzanego przez zwojnicę rośnie, to pierścień przez zwojnicę. Zadanie 6. (0–6)Silnik cieplny to urządzenie działające cyklicznie, które w wyniku wymiany ciepła z otoczeniem wykonuje pracę. Załóżmy, że T1 jest temperaturą źródła ciepła, z którego silnik pobiera ciepło w każdym cyklu pracy, a T2 jest temperaturą chłodnicy, do której silnik oddaje ciepło w każdym cyklu. Zgodnie z zasadami termodynamiki, sprawność η dowolnego silnika pracującego pomiędzy danymi temperaturami źródła ciepła i chłodnicy nie może przekraczać sprawności tzw. silnika idealnego, danej wzorem (temperatury wyrażone są w kelwinach):Zaprojektowano dwa różne silniki cieplne S1 oraz S2 , w których wykorzystuje się sprężanie i rozprężanie ustalonej masy gazu. Każdy z silników w jednym cyklu pracy pobiera po 100 J ciepła ze źródła o temperaturze 477°C i oddaje pewną ilość ciepła (inną dla każdego z silników) do chłodnicy o temperaturze 17°C. Do działania każdego z silników wykorzystano różne cykle termodynamiczne, tak aby:• w cyklu pracy silnika S1 ilość ciepła oddanego do chłodnicy była możliwie najmniejsza – tzn. tak mała, jak na to pozwalają prawa termodynamiki • w cyklu pracy silnika S2 praca sił parcia gazu podczas jego rozprężania wynosiła 34,8 J, a praca podczas sprężania gazu (przeciwko sile parcia) była równa 8,7 J. pwz: 29%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla a) Oblicz ciepło, jakie oddaje do chłodnicy silnik S1 w jednym cyklu pracy. b) Wyjaśnij na podstawie informacji podanej w treści zadania 6., dlaczego ilość ciepła oddanego w cyklu pracy silnika S1 nie może być mniejsza od pewnej wartości granicznej. pwz: 23%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla Oblicz ciepło oddane do chłodnicy w jednym cyklu pracy silnika S2. pwz: 43%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla 7. (0–1)Oceń prawdziwość każdego dokończenia poniższego 8. (0–6)Bezwzględny współczynnik załamania światła w ośrodku materialnym zależy w ogólności od częstotliwości światła, a więc zależy też od długości fali światła w próżni. Na wykresie poniżej przedstawiono zależność wartości n bezwzględnego współczynnika załamania światła od długości fali λ tego światła w próżni – dla pewnego rodzaju szkła. Na osi λ zaznaczono szary odcinek odpowiadający w przybliżeniu zakresowi długości fal światła widzialnego w próżni. Przyjmij, że długości fal światła fioletowego i czerwonego odpowiadają krańcom zaznaczonego odcinka (światło czerwone w próżni ma większą długość fali od światła fioletowego).pwz: 35%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla Wartość prędkości i częstotliwość światła fioletowego po wniknięciu do szkła oznaczymy jako vF oraz ƒF, a wartość prędkości i częstotliwość światła czerwonego po wniknięciu do szkła oznaczymy jako vC oraz ƒC. Uzupełnij zdanie. pwz: 31%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla Światło o długości fali w próżni λ = 0,50 μm przechodzi do szkła, dla którego zależność n(λ) przedstawiono na powyższym wykresie. Oblicz długość fali λsz, jaką będzie miało to światło w szkle. Dodatkowe informacje do zadań Równoległą wiązkę mieszaniny światła czerwonego i fioletowego biegnącego w powietrzu skierowano na soczewkę skupiającą wykonaną ze szkła opisanego w treści zadania 8. Na ekranie ustawionym za soczewką zaobserwowano plamkę. Przy pewnym ustawieniu ekranu obserwuje się, że środek plamki jest fioletowy, a zewnętrzna część plamki jest czerwona. Z kolei przy ustawieniu ekranu w pewnej innej odległości od soczewki środek plamki jest czerwony, a zewnętrzna część plamki jest fioletowa. Rysunek 1. przedstawia soczewkę i ekran w tym spośród dwóch opisanych ustawień, w którym odległość ekranu od soczewki jest większa. Na ekranie oznaczono plamkę. Skrajne promienie wiązki przed soczewką oznaczono jako P1 i P2. Rysunek 1. pwz: 23%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla Zapisz na rysunku 1. kolor środka plamki na ekranie. Dorysuj – od soczewki do ekranu – bieg promieni fioletowych (oznacz je jako P1F , P2F) oraz czerwonych (oznacz je jako P1C, P2C), po przejściu promieni P1, P2 przez soczewkę. pwz: 23%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla Przyjmij, że obie wypukłości soczewki są sferyczne, soczewka jest umieszczona w powietrzu, a bezwzględny współczynnik załamania światła w powietrzu jest równy 1. Oblicz stosunek ogniskowej soczewki dla światła fioletowego do ogniskowej soczewki dla światła czerwonego. Zadanie 9. (0–6)Wiązka elektronów jest przyśpieszana w lampie rentgenowskiej napięciem U = 2 500 V. Elektrony, przyśpieszone w polu elektrycznym, padają na anodę, gdzie następnie wyhamowują. Utracona przez poszczególne elektrony energia kinetyczna – w części lub całości – jest zamieniana w energię promieniowania elektromagnetycznego emitowanego przez lampę. Jeżeli jakiś elektron całkowicie wyhamuje bez przekazywania energii kinetycznej atomom anody, to cała energia kinetyczna elektronu może zostać zamieniona na energię jednego kwantu promieniowania. W zadaniach przyjmij, że prędkości początkowe elektronów oderwanych od katody wynoszą zero, a przyśpieszane elektrony poruszają się w próżni. Polecenia dotyczą widma ciągłego promieniowania, tzn. pomija się widmo emisyjne atomów anody. pwz: 30%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla Spośród rysunków A–D zaznacz rysunek z wykresem prawidłowo przedstawiającym zależność natężenia promieniowania rentgenowskiego (na jednostkowy przedział długości fali) od długości fali tego promieniowania. Osie na poniższych wykresach wyskalowano liniowo. Symbol IE, opisujący oś pionową, oznacza natężenie promieniowania (na jednostkowy przedział długości fali).rys. A rys. Brys. Crys. D pwz: 23%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla Oceń prawdziwość poniższych zdań. pwz: 27%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla Oblicz wartość prędkości elektronów padających na anodę. pwz: 19%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla Oblicz najmniejszą długość fali promieniowania rentgenowskiego wytwarzanego przez tę lampę. Zadanie 10. (0–4)Cztery oporniki R1, R2, R3, R4 o jednakowym oporze elektrycznym R połączono w obwód, który następnie podłączono do źródła stałego napięcia elektrycznego U. Na rysunku 1. przedstawiono schemat obwodu w sytuacji, gdy klucz K jest zamknięty, a na rysunku 2. – gdy klucz K jest otwarty. Przyjmij, że napięcie U zasilające obwód jest takie samo w obu sytuacjach. pwz: 60%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla Rozważamy sytuację, gdy klucz K w obwodzie jest zamknięty (zobacz rysunek 1.). Natężenia prądów płynących przez oporniki R1, R2, R3, R4 oznaczymy odpowiednio: I1, I2, I3, I4. Zaznacz poprawne dokończenie zdania wybrane spośród A–D. Prawidłowe relacje między natężeniami prądów płynących przez poszczególne oporniki to: I1 > I2 oraz I3 > I4 I4 > I1 oraz I1 > I2 I4 > I2 oraz I3 > I1 I1 > I4 oraz I4 > I3 pwz: 36%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla Po otwarciu klucza K w obwodzie (zobacz rysunek 2.) ustalił się nowy rozkład napięć na opornikach i nowy rozkład natężeń prądów przepływających przez oporniki. Wybierz właściwe określenia dotyczące zmian natężenia prądu płynącego przez dany opornik po otwarciu klucza K oraz zmian napięcia na danym oporniku po otwarciu klucza R1 Natężenie prądu Opornik R2 Natężenie prądu Opornik R4 Natężenie prądu Zadanie 11. (0–4)Badano próbkę zawierającą jądra pewnego izotopu ulegające samorzutnej przemianie beta minus. Detektor cząstek beta minus (elektronów) rejestrował promieniowanie pochodzące z tej próbki w ciągu kolejnych pięciu dni. Detektor włączał się każdego dnia zawsze o tej samej porze i rejestrował promieniowanie przez 5 minut. Wyniki pomiarów z kolejnych dni – po odjęciu zliczeń pochodzących od innych źródeł – przedstawiono w tabeli zliczeń13741346137213601358Pole powierzchni, na jaką padały cząstki beta minus zliczane przez detektor, stanowi 1/16 pola sfery o środku w miejscu źródła cząstek i promieniu równym odległości detektora od źródła promieniowania. Załóż sferycznie symetryczny rozkład emitowanego promieniowania oraz brak pochłaniania promieniowania przez ośrodek pomiędzy źródłem a detektorem. Przyjmij, że wszystkie cząstki padające na powierzchnię detektora były zliczane. pwz: 20%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla Oceń prawdziwość każdego dokończenia poniższego zdania. W wyniku emisji cząstki beta minus przez jądro atomowe zawsze pwz: 74%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla Podaj poprawne dokończenie zdania wybrane spośród A–D. Na podstawie wyników pomiarów można stwierdzić, że czas połowicznego rozpadu tego izotopu A. wynosi w przybliżeniu 5 dni. B. wynosi w przybliżeniu 5 minut. C. jest wiele razy dłuższy niż 5 dni. D. jest wiele razy krótszy niż 5 minut. pwz: 34%Poziom wykonania zadania - im wyższy, tym zadanie było łatwiejsze dla Średnią aktywność promieniotwórczą A próbki w czasie ∆
. 338 272 346 244 204 461 136 42
zadania maturalne z fizyki pdf